1分快3-(中国)搜狗百科
1分快32023-01-31 16:05

以人才赋能边疆高质量发展******

  作者:柴真(石河子大学党委书记)

党的二十大报告从“实施科教兴国战略,强化现代化建设人才支撑”的高度,对教育、科技、人才事业进行一体化部署。科技创新离不开人才支撑,高校作为培养和集聚人才的主阵地,在中国式现代化进程中发挥着不可替代的作用。只有切实提高人才自主培养质量,聚天下英才而用之,才能为全面建设社会主义现代化国家提供坚实的人才保障和智力支持。

地处西部边陲的石河子大学自诞生之日起,就致力于为屯垦事业培养汇聚大批英才。73年砥砺奋进,学校初心不改,努力建设具有兵团特色的人才高地,为边疆经济社会发展注入新动能。

精心育才,谋长远之计

人才是支撑发展的第一资源,关口前移,源头施策,就必须持续加强高质量人才队伍建设。石河子大学始终把人才工作摆在突出位置,培养造就了一支高水平师资队伍和一大批“下得去、留得住、用得好”的高素质人才。近年来,学校新增国家人才计划入选者27人、国家教学名师1人,新增教育部创新团队2个,“全国高校黄大年式教师团队”2个,60%以上的毕业生留在新疆和兵团建功立业,真正为边疆经济社会发展培养了人才、留住了人才。

党的二十大报告强调,培养造就大批德才兼备的高素质人才,是国家和民族长远发展大计。石河子大学将以党的二十大精神为指引,深入学习贯彻习近平总书记关于新时代人才工作的新理念新战略新举措,坚持党管人才原则,深入推进人才队伍建设“精准提拔一批、全力帮扶一批、重点奖励一批、全面培养一批、柔性引进一批”工程,通过对口支援计划、部省合建计划、高层次人才队伍建设支持计划、青年创新拔尖人才计划、“攀登计划”等政策,持续加大高层次人才和新进人才的自培力度,实现人才发展体制机制的全面优化。同时,学校将紧紧围绕立德树人根本任务,坚持用兵团高校的红色底蕴启智润心、培根铸魂,以兵团精神育人导向深化学生理想信念教育,以学科动态调整对接国家、兵团战略发展和区域人才需求,为培养有理想、敢担当、能吃苦、肯奋斗的紧缺人才、战略性新兴产业人才以及民生急需的专业人才打下坚实基础。

多方引智,汇发展合力

聚天下英才而用之,才能加快建设更具竞争力的人才中心和创新高地。多年来,石河子大学坚持用好用足西部和兵团人才政策,完善学校配套措施,国内外引智工作不断取得新成绩。五年来,学校新增中国工程院院士1人、双聘院士1人、院士工作站在站院士3人,引进国内绿洲学者107名、国外绿洲学者2名,专任教师中具有博士学位人数增加6%。其中,“面向绿洲生态的农业化学品工程学科创新引智基地”入选“高等学校学科创新引智计划”(简称“111”计划),实现了学校在国际人才引进方面的重大突破。

在深入实施人才强国战略的时代背景下,石河子大学将继续在汇聚人才上发力。通过“绿洲学者”“聚贤工程”等项目,不断完善高层次人才流入的制度保障。充分发挥事业的拴心留人作用,着力加强内涵建设,将高端人才引进与事业平台搭建有机结合,以一流学科为引领,以“高峰、高原、高地和培育学科”四级学科生态体系为基础,以博士点、重点实验室、工程中心、文科基地建设为抓手,全力为一流人才提供一流创新平台,实现人才发展与平台建设相互促进、共同提升。持续深化改革,推进落实放管服,健全评聘考贯通的考核评价机制,扎实做好评价考核激励后半篇文章,营造更加多元、更加开放,也更具吸引力的人才成长环境。

人尽其才,显时代担当

高校作为科技创新的策源地,如何更好地面向国家战略需求、服务中国式现代化建设,是必须回答好的时代命题。石河子大学始终坚持“以服务为宗旨,在贡献中发展”的办学理念,充分发挥人才资源和智力优势,引导师生把论文写在边疆大地上,努力为区域经济社会发展贡献石大智慧和力量。

2022年,石河子大学各级各类科研项目立项合同总经费比去年增加30%,创历史新高。围绕巩固脱贫攻坚成果与乡村振兴有效衔接,学校以科技特派员专家团队服务项目为抓手,发挥科技服务社会功能,赴基层连队、村庄重点围绕特色林果、设施农业、医疗综合服务等方面开展科技服务,共培训基层职工、农民9000余人次,服务带动农户5600余户,共带动受援对象增收近300万元,有效推动科技成果加快向现实生产力的转化,助力区域产业大发展。

党的二十大为学校更好地服务国家战略需求指明了方向。学校将着眼科研创新长效机制的建立,加强有组织科研,积极参与“揭榜挂帅”项目,主动承担国家、兵团重大科研项目,努力解决“卡脖子”技术问题,培育更多科技领军人才和科研创新团队,产出更多具有标志性的重大科研成果。立足兵团产业特色,学校将在荒漠生态、盐碱治理与农业提质增效、健康养殖、农产品加工等领域进一步加强应用技术推广与示范;瞄准区域长远发展需求,学校将继续推进兵团能源发展研究院建设,配套设置相关专业,在人才培养和科研转化上双管齐下。以科研团队为基础,以学校合作企业、“访惠聚”工作队和定点帮扶单位为基点,学校将持续组织专家教授深入基层团场和地方县(市)开展技术推广、培训和咨询服务,深化“专家+工作队+职工”“技术+产业”的科技合作模式,为兵团经济增长、转型升级、供给侧结构性改革注入源源不断的动力。

踏上波澜壮阔的新征程,石河子大学将深深锚定实现中华民族伟大复兴这一宏伟目标,坚定不移贯彻落实科教兴国战略,继续扎根兵团,赓续红色血脉,以更有激励性的人才培育机制、更有吸引力的人才引进政策、更有竞争力的人才发展平台,书写好不负党之所期、国之所系、民之所愿的“人才戍边”新篇章。

  《光明日报》( 2022年12月29日 05版)

1分快3

时空穿越不再是梦?科学家成功模拟“全息虫洞”!******

  近日,科学家打造出

  “全息虫洞”的消息冲上热搜

  引发了大家的讨论

  虫洞是什么?

  我们真的能用它穿越时空吗?

  今天一起了解虫洞

  01虫洞?是虫子住的洞吗?

  宇宙中的虫洞是科学家推测可能存在的一种特殊隧道,它的两头连接着两个遥远的时空,理论上说,如果能从虫洞的一端穿越到另一端,就能实现超越光速的时空旅行。

  电影《星际穿越》中结尾主角就是进入了虫洞,发生了时空穿越。感兴趣的同学可以去看看哦!

  图源:截图 电影星际穿越中的画面

  要理解虫洞,我们首先要理解“黑洞”和“白洞”。在霍金的两大科普著作《时间简史》《果壳中的宇宙》的帮助下,黑洞这一概念早已深入人心。它是在恒心死亡时,由于体积收缩,密度变大,获得使光也无法逃脱的巨大密度的一种天体。而所谓白洞,其实就是和黑洞具有相反性质的特殊天体,特点是不断往外“吐”出东西,只发射而不吸收。

  一个吞噬一切,一个“吐出”一切,大家可以想象一下,如果一个黑洞恰好连上了一个白洞时会怎么样呢?这时就会形成虫洞(worm hole)。

  图源:中科院理论物理研究所 虫洞示意图

  1915年,爱因斯坦提出了广义相对论,在爱因斯坦的理论中,空间和时间不再是绝对的、不可变的,而是可塑的、相互依存的,且它们会受物质存在的影响。1935年,爱因斯坦和他的助手罗森在广义相对论的框架下研究黑洞,首次提出“爱因斯坦-罗森桥”的概念,这座“桥”连接了时空中两个不同区域的通道。上世纪50年代,物理学家惠勒将这座桥命名为“虫洞”。

  这听起来是不是很令人心动?进入虫洞,你可能会出现在宇宙的任意一个角落,甚至穿越时空,改写你的人生,重新选择你曾经后悔的事。然而,虽然广义相对论允许虫洞的存在,物理学家还从未在宇宙中观测到虫洞,目前只有黑洞被人类实际观测。

   02量子虫洞又是啥?

  虽然我们还没有在宇宙中发现虫洞,但现在科学家们创造出了虫洞,还观察到了信息在虫洞之间传递的现象。不过,先别想着穿越时空,这个虫洞并非上述所讲的引力虫洞,而是一个量子虫洞。

  日前,英国《自然》(Nature)杂志发表的一篇论文首次报道了利用一台量子处理器对全息虫洞进行量子“模拟”。这个全息虫洞成功地将量子态通过虫洞,由一个量子系统传递到了另一个量子系统。

  如果我们想象中可以时空旅行的虫洞叫作“时空虫洞”的话,量子态的量子虫洞则可以称之为“微型虫洞”。

  那么,研究量子虫洞有什么用呢?

  这是因为,广义相对论和量子力学虽然各自都发展了很长一段时间,但它们之间仍然有一个根本性的“冲突”——量子引力。

  具体来说, “广义相对论”描述了引力且在恒星、行星、银河上等大尺度上都适用;而“量子力学”描述了其他3种作用在微观尺度的基本力。这二者是否有“握手言欢”的可能?这就要看量子引力的表现。

  物理学家们当然想通过实验去检验,但很遗憾,量子引力的能量与尺度,此前的实验室条件是无法模拟和观测的。而这就是“全息”的用武之地,它可以帮助物理学家创建一个与原始系统相当,但不太复杂的系统。这类似于用二维全息图显示三维图像的细节。

  03量子虫洞是怎么创造出来的?

  2019年谷歌的物理学家们提出了一种实验假说,认为一个在物理实验室中可以再造的量子态,能被解释为在两个黑洞之间的虫洞中穿越的信息。

  现在,来自谷歌、MIT、费米实验室和加州理工学院的科学家们,用9个量子位、1台量子计算机模拟出了对应的量子动力学。在同一个量子芯片中,他们创建了两个纠缠的量子系统,并将一个量子位放入其中一个量子系统。结果,他们在另一个量子系统中观察到了这个量子位“穿越虫洞”而来的信息,结果符合预期的引力性质。

  这是什么意思?大家可以设想在两组纠缠粒子之间,穿上一根电线或其它任何的物理连接,让粒子们编码出虫洞的两个口。

  在这种耦合作用下,操作其中一侧的粒子,会引起另一侧粒子的变化。这样就有可能在两侧粒子之间撑开一个虫洞。

  图片来源:inqnet/A.Mueller 量子计算机的模拟显示了信息如何通过虫洞

  尽管存在争议,但是这项前所未有的实验,探索了时空以某种方式从量子信息中产生的可能性。随着量子装置的不断改进,错误率会更低,芯片会更强,那么对引力现象的研究也会更加深入。

  END

  资料来源:中科院物理所、极目新闻、科技日报、环球科学、量子位

  整理:董小娴

中国网客户端

国家重点新闻网站,9语种权威发布

1分快3地图